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Abstract

The aim of this study is to develop an electromagnetic actuator (EMA) for the vibration control of a
cantilever beam with a tip mass. The proposed EMA system consists of an electromagnet and a permanent
magnet attached at its top, whereas another permanent magnet is installed at the tip of the cantilever beam.
The gravity force is balanced using the repulsive force between the two permanent magnets. The governing
equation of the beam vibration coupled with the proposed EMA can be simplified as a bilinear system
(BLS). In this study, the PID control, quadratic feedback control and optimal feedback control laws are
employed to control the coil currents of electromagnet. The experimental results and numerical solutions
reveal that vibrations of the cantilever beam are effectively suppressed by using the proposed EMA with all
the three control efforts.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The control problem of dynamic responses for a cantilever beam with a tip mass is often
encountered in many practical engineering applications. To explore the basic nature of the
cantilever beam with a tip mass, number of analytical and experimental studies on this issue have
been carried out [1,2]. In the mean time, researches on dynamic characteristics of actuators used in
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the magnetic levitation system have received attention in the structure control problems. The
magnetic levitation techniques not only exploit many advantages of no-mechanical-contact
suspension, guidance and propulsion systems, but also utilize the electric current feedback to
remove vibration of the levitation body. Schafer and Holzach [1] developed an experimental
system for the vibration control of a cantilever beam, in which an optimal regulation for the
magnetically levitated body was carried out. In their experiment, the electromagnet was
considered to be ideal, and the nonlinear dynamics of the actuator was not taken into
consideration. Ju et al. [2] proposed an electromagnetic actuator to the vibration control of a
cantilever beam. In their study, both collocated and non-collocated PID controls were used to
suppress vibrations of the cantilever beam. By using an ideal permanent magnet and an
electromagnet, Nagaya and Arai [3] proposed an actuator in the magnetic levitation system. The
analytical expressions for obtaining the levitation force, spring constant, and the control force
versus the electric current in the electromagnet were derived using the electromagnetic theory. By
using the drag-force-type electromagnetic actuators, Nagaya and Ishikawa [4] proposed a
vibration isolation table, which can be moved in both horizontal and vertical directions by
magnetic forces. Moreover, Nagaya and Sugiura [5] proposed a permanent magnetic levitation
system using a couple of electromagnetic actuators, and found that the feedback for obtaining a
linear spring constant has no dependence on the damping force, which is generated by a velocity
feedback loop.

The bilinear controller system, perhaps, contains the simplest class of nonlinear system. In
general, the control problems for the BLS can be distinguished into three cases [6]: (i) linear
feedback control, (ii) quadratic feedback control and (iii) optimal feedback control. Lyapunov
stability theorem could be employed to find the stabilizing feedback controller [7] for the
continuous BLS such that the closed-loop system is asymptotically stable. Cebuhar and Costanza
[8] studied the optimal control problems for the BLS and solved them with a view to approximate
analogous problems for the general nonlinear system. The approximation procedure is
characterized by a sequence of linear problems converging to the overall optimal solution. Based
on Lyapunov stability theorem and the solution of Lyapunov equation, Benallou et al. [9]
designed a nonlinear controller, which is similar to the quadratic feedback controller. Chen [10]
proposed a novel nonlinear feedback control such that the closed-loop system is not only
asymptotically stable but also exponentially stable.

In this study, a cantilever beam is excited in the vertical direction by applying a dc current to the
electromagnet. The external nonlinear magnetic force, generated by the EMA, is considered to act
on the tip mass. Mathematical expressions of the attraction/repulsive forces are derived using
Biot—Savart Law [11]. In addition, the governing equation of motion for the proposed EMA can
be simplified as the BLS, which is the main control problem in this paper. Three control strategies,
including the PID control, the quadratic feedback control and the optimal feedback control, are
applied to suppress the flexible vibrations of the cantilever beam. The dynamic formulations and
energetic analysis are discussed. Finally, numerical solutions and experimental results are
compared to validate the theoretical analysis.

The paper is organized as follows. Detailed descriptions and theoretical developments on the
proposed model are given in Section 2. Mathematical derivations of the controllers are included in
Section 3. Numerical simulations and experimental results are given in Section 4. Conclusions are
drawn in Section 5.
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2. Modeling assumptions and theoretical analysis
2.1. Assumptions

The physical model of the proposed EMA is illustrated in Fig. 1(a), the cantilever beam with tip
mass by the Euler-beam theory can be seen in Ref. [12], where p is the mass density, 4 is the cross-
sectional area, / is the total length, E is the Young’s modulus, and 7, is the moment of inertia of
the uniform cantilever beam, which is modeled by the Euler-beam theory. The tip mass is made of
the permanent magnet with mass m, and an electromagnetic actuator is employed to control its
vibration.

2.2. Kinetic and strain energies

According to the free-body diagram shown in Fig. 1(b), we have the shear force v = —myg
and the moment—shear relationship dM /dx = —v. By using the boundary conditions (0, 7) =
vx(0,7) = 0 and v, (/,t) = 0, it is easy to obtain the deflection

o6, 1) = v(l, 1 B Gy -1 (?)3] (1)

where v(/, t) = —mgl® /(3EI,) is the tip deflection of the cantilever beam subjected to a tip loading
mg, and EI, is the bending rigidity of the beam.

Energy methods [12] can be used to find the approximate equation of motion of the system
in Fig. 1(a), and its equivalent mass-spring system is shown in Fig. 1(c). The elasticity of the
cantilever beam is lumped as an equivalent spring with an elastic constant K,, while the inertial
properties of the cantilever beam and its tip mass are lumped as an equivalent mass M,.

By using Eq. (1), the kinetic energy of the cantilever beam and its tip mass can be written as

1 [ 1 1
KE =2 / pAv3(x,t)dx + Emvf(l, 1= 5Meuf(l, 0, (2a)
0

where M, = (33/140)pAl + m, and v,(/, ?) is the velocity of the tip mass.
The strain energy of the cantilever beam can be written as

!
S.E. = / %Elnvix(x, fHdx = %Kezﬂ(l, 0, (2b)
0

where K, = (3EI,)/I°.
For an underdamped system, one cycle apart from free vibrations decay can be measured
exponentially in Fig. 1(d), which along with the logarithmic decrement  are given in Ref. [13] as

5_ ln<2—1> _ 2n{  2n C, (20)

) \/I—Cz_w_dZMe’

where

2 2
T T s the period of damped vibration,

Td:w_d_wn\/l_C2



960

R.-F. Fung et al. | Journal of Sound and Vibration 288 (2005) 957-980

z
! Dt 2= (1)

:p,A,I,E,In

et

SNNNNNNNNN

@

(b)

(d)

Fig. 1. Schematic diagram of the system. (a) The cantilever beam with a tip mass excited by an electromagnetic
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is defined as damping ratio,

wg = o/ 1 = is the frequency of damped vibration,
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e

Wy = is the undamped natural frequency.

e
From Egs. (2a) and (2b), we obtain two equivalent parameters: elastic constant K, and
equivalent mass M.. On substituting them into Eq. (2¢), we can obtain the damping constant C,.
By using the equivalent model with the elastic constant K,, the damping constant C,, and the
mass M., the equation of motion is easily derived and the system becomes 1 dof. The total
mechanical energy is the combination of the kinetic energy (2a) and strain energy (2b).

2.3. Modeling of the electromagnetic actuator

Fig. 2 illustrates the coordinates of the EMA including an electromagnet and a permanent
magnet attached at the cantilever tip. The coordinates and symbols are defined as follows: a; is the
width of a rectangular permanent magnet, a, is the outer width of the coil, b; is the length of a
rectangular permanent magnet, b, is the outer thickness of the coil; z; is the coordinate describing
the upper surface of the permanent magnet at the cantilever tip, z; and z3 are the coordinates
describing the upper and lower ends of the core of the electromagnet, respectively; z,; and z., are
the coordinates describing the upper and lower ends of the coil of the electromagnet, respectively;
and zj is the gap between the two magnets.

Figs. 3(a)—(e) and 4 illustrate the current and magnetic flux of a rectangular coil. Fig. 3(a)
illustrates the geometry of one turn rectangular current. Fig. 3(b) illustrates magnetic flux at the
point P due to the current AB. Figs. 3(c) and (d) illustrate magnetic flux at the point P due to the
current AB mapping on the zx and zy planes, respectively. Fig. 3(e) illustrates magnetic fluxes at
the point P due to the coil current of N turns. It is seen that the magnetic flux densities due to the
coil current [4], at an arbitrary point (x,y,z) due to an input current / flowing through a
rectangular coil can be expressed as

Besx(xs s Z) = :u(lersx(xs Y, Z), (321)
Besy(X,y, Z) = M(]].Fesy(xaya Z)a (3b)
A
4 by
/ i, 2 |
|
Permanent b2
magnet E
N bz,
]
Electro-
magnet

Fig. 2. Coordinates of the proposed electromagnetic actuator.
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Fig. 3. Coordinates of the rectangular currents. (a) Geometry of one turn rectangular current. (b) Magnetic flux at
point P due to the current AB. (c) and (d) Magnetic fluxes at the point P due to the current AB in the xz and yz planes,
respectively. (e) Magnetic fluxes at the point P due to the coil currents of N turns.

BCSZ(XJ y: Z) = MOerSZ(x7y9 Z), (3C)
where

J=Jx =y (3d)
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Fig. 4. Photograph of the experimental cantilever beam with the EMA.
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Jy = @I for the coil in the x direction,
) N I .
Jy= WI for the coil in the y direction,
G—PH

in which p, is the magnetic permeability in air, j is the electric current per unit cross-sectional area
in the coil, N is the number of turns of the coil, and H represents the height of the coil (z,; —z.).
The detailed parameters of Egs. (3)—(9) can be seen in Appendix A. In addition, it is assumed that
the width and thickness of rectangular coil are equal in the x and y directions (i.c.
ay/2 —ai/2 =by/2 — b1 /2), and one will have j = j, =j,. The detailed derivatives can be seen
in Ref. [4].

The magnetic flux densities due to the core under the input current 7 are

Becx(xa Y, Z) = Jce(I)Fecx(xa Y, Z)a (43.)
Becy(x: Y, Z) = Jce(I)Fecy(x: Y, Z)a (4b)
Becz(xa ) Z) = Jce(I)Fecz(xa ) Z)a (4C)

where

NI NI
Jeell) = p— = popt, — (4d)
Vot Vo)
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In Eq. (4d), u, denotes the relative permeability of the electromagnet core. Since the electromagnet
and permanent magnet are connected together at boundary z = z,, the core of the electromagnet
can be magnetized by the permanent magnet. The magnetization strength J, in the core due to
the permanent magnet can be found by using

Gep
1 —v)Jy, 5
(1= 5)
where J is the strength of magnetization of the permanent magnet, and v is the leak coefficient.
The magnetic flux densities B,,, B,,, and B,. at a point P induced by both the permanent
magnet and the magnetized core are obtained by summing the flux densities due to Jo and J, as

Jep =

Bpx(xa y’ Z) = JOFpX(xy y: Z) + JCpFCCX(xa y: Z)a (63)
B]?y(x: y> Z) = JOpr(x, J’, Z) + Jchecy(x: ya Z)a (6b)
B,.(x,y,2) = JoF p(x,3,2) + JpFec:(X, 1, 2). (6¢)

With the opposite polarity, the magnetic flux densities By, B,,,, and B, at the point P induced
by the permanent magnet of the cantilever tip are

Bmx(xs Vs Z) = J()me(x, ) Z)a (73)
Bmy(X, Vs Z) = J()me(x, s Z): (7b)
Bmz(xa Y, Z) = JOsz(X, Y, Z)- (7C)

Hence, the magnetic flux densities By, By, and Bz due to the entire coil, permanent magnet,
and the core of electromagnet are

Br(x,9,2,1) = Besx (X, 9,2, 1) 4+ Beex(X,,2,1) + Byx(x, 3,2, 1), (8a)

By (x,y,2,1) = Begy(X,,2,1) + Beey(X,,2,1) + Byy(x, ,2,1), (8b)

Bp(x,y,2,1) = Beso(x, y, 2, 1) + Bee:(X, p, 2, 1) + Bp:(x, ,2,1). (8¢)

Since opposite polarities face each other, the total magnetic flux densities B,, B,, and B. are
By(x,y,2,1) = By(X, ,2,1) — Bx(x, y, 2), (9a)

By(x,y,2,1) = Bp(x,y,2,1) — Byy(x,,2), (9b)

B.(x,y,z,1) = B.(x,y,z,1) — B,-(x,y, 2). (9¢)

2.4. Magnetic force

The total force vector F in the magnetic field is obtained by using Maxwell’s stress tensors,

which can be seen in Refs. [3-5]:
F:// T - nda, (10a)
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where T is the stress tensor in the magnetic field and 7 = 7n.n, 4 7i,n, + n.n. is the normal vector
of a small area da. T is shown by using the orthogonal coordinates (x, y, z) as follows:

[ B2 — B — B’ ]
— B\B, B.B.
Txx T Xy T Xz 2 2 2
1 —B.+ B, — B:
T=|Ty T,, T, |=— B,B, + B,B. ) (10b)
sz sz T:z .UO B2 32 BZ
B.B BB e A Bt
zx z&=y 2

The interactive force F.(zi I) of the EMA is then expressed as
F.(zx, 1) :// (Toyny + szﬁy + T..n.)da. (11a)

Since the magnetic field is symmetrical about the z-axis, the components of the normal vector
become n, = n, = 0. Substituting these into Eq. (11a), yields

01/2 b1/2

1
nthh—/ [B2(x, . 25, 1) — B2(x, .z, 1) — BA(x,y, zi, D] dx dy. (11b)
2p —a1/2 J—by /2

Substituting Eq. (9) into Eq. (11b), the actuating force has the form
Fo(zk, 1) = aa(z)I” + a1 ()] + Fy(zp), (1lc)

where oy(zx), o1(zx) and Fy(z;) represent the coefficients, which are functions of the air gap z.
The details can be seen in Appendix B.

2.5. Control force

In Fig. 1(a), z;; = g, is the equilibrium position of air gap between the two permanent magnets,
one is attached to the electromagnet and the other is attached at the tip of the cantilever beam. In
this static equilibrium, we have the input current / = 0. According to Eq. (11c), the corresponding
actuating force is given by

F.(z1,0) = F,(z)). (12a)
Define the control force under the non-zero input current I as
}:c(Zk,I) = ITZ(Zkvl) - ITS(Zz)
= ox(zi)” + o (2] + [F(zi) — Fo(zp)]- (12b)

The forces generated by the electromagnetic actuator are dependent on the input currents and
air gaps between the two permanent magnets. From the calibration results of the magnetic force,
it is found that the term a(z;)I? is much smaller than the other terms in Eq. (12b), especially when
the current is so small that it can be neglected. The electromagnetic forces, described by using a
multiple linear regression model [14] with the ANOVA (Analysis of Variance Table) analysis
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Table 1
The ANOVA analysis table of the multiple regression method

The regression equation is: Fe(zg, I) = 6.40 x 10725 + 1.60 x 10721 + 5.46 x 10721

Multiple R 99.8% Analysis of variance

R square 99.7% DF Sum of squares Mean square F PROB>F
Adjusted R square 99.6% Regression k=3 1.5SIE+0 5.05E—1

Standard error 1.54E-3 Residual n—k—1=1997 4.74E-3

Observation number 2001 Total n—1=2000 1.52E+0

Variables in the equation

Predictor Coefficient Stdev t-ratio P-values
B1(Zi) 6.40E—3 1.65E-3 3.87E+0 1.12E—4
B(I) 1.60E—2  8.74E—4  1.83E+]1 0.00E+0
Bx(ZiI) 5.46E—1 2.73E-2 1.98E+1 0.00E+0

listed in Table 1 are reduced as

Fo(zi, I) =~ o1 (zi )] + [Fy(zr) — Fi(2))]
~ Bizi + Bol + Byzid, (12¢)

where z; = g, + v(/, 7).

Fe(zi, I) = B1(go + v) + ol + B3(gp + v)]
~ B1go + Brv+ (By + B390)] + B3vl. (12d)

In the ANOVA analysis, the squared correlation between the real values and fitted values is
called the square of multiple correlation coefficients, usually labeled ““R-square”. The idea is that
R-square value gives some sense about the agreement between the observed values, and the
predicted values resulting from the regression equation. The value of R-square is between 0 and 1,
and as we increase the number of predictors, R-square gets larger. This form of multiple linear
regression models can be found in Appendix C.

2.6. Equation of motion

The equation of motion of the equivalent model in Fig. 1(c), which is excited by the control
force, can be easily obtained by using Egs. (2a)—(2c) as

F(zi, 1) = Mg — Ceil, 1) — Kev(l, 1) = M (1, 1), (13a)

Mei]‘(la t) + CCU(IJ t) + KGU(Zv t) = FC(Zkal)a (13b)

where F.(z;,1) = Fe(zi,I) + F(z;) and Fy(z;) = M.g.



R.-F. Fung et al. | Journal of Sound and Vibration 288 (2005) 957980 967

In the following, we consider the case of small vibrations with the coefficient zx = g, + v(/, ?).
Hence, Eq. (13) can be simplified as

M+ Coo+ (Ke — B)v = P1go + Pal + Blv, (14)

where 8, = B, + B39go-
If the control current / of the coil system is given as I = Iy + I ¢, where Iy and I ¢ are the steady

current and the control current, respectively. Then the equation of motion for the cantilever beam
with a tip mass can be expressed as

M+ Coo+ (K, — fs)v = P+ Palc + Pzl cv, (15)
where

Bs =B+ Bslo and Be= 19y + Palo.

Considering the case of the steady-state situation, i.e., ¥ = ® = 0 and v = constant, then Eq. (14)
without the control current can be rewritten as

(Ke = Bs)vs = Pe. (16)
Thus, we have the steady-state displacement v = 4 /(K. — f35).
In order to simply the dynamic analysis, let w = v — vy, and one will have W = & and w = 0.
Therefore, Eq. (15) can be rewritten as
Mo+ Co + (K, — Bs)w = Bl c + Bl cw, (17)
where 5; = B4 + f;0,. It should be noted that the variable w is coupled with the control input /¢ in
Eq. (17), which is a standard form of a bilinear equation [6].
The dynamic equation (17) can be further expressed in the state-space form
X = AX+NXU +BU = AX + (NX+B)U, X(0) = X, (18)

where X = {w w}T € R?>, U = V = I¢R can be regarded as an equivalent circuit, and the matrices
A, N, and the vector B are

0 1 0 0
A= |Ps—Ke  Co| eR¥™ N=| B ol € R*>*?, (19a—Db)
M, M, RM,
0
B=| P e R, (19¢)
RM,

The controller design will be formulated from Eq. (18) such that X — 0 and U — 0 as t — oo.

3. Controller design

In this section, the PID control, the quadratic feedback control and the optimal feedback
control will be designed for the bilinear equation (18). Both the numerical simulations and
experimental verifications of a cantilever beam with the proposed EMA will be performed with all
the three controllers.
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3.1. The PID control

The structure of a typical PID (Proportional-plus-Integral-plus-Derivative) controller is very
simple in the control loops, which can be easily understood and implemented in practice. Such a
simple PID control scheme is given by

e = K+ ki (S57) + K (F7 ) e 20)

where I ¢(z) represents the control current as a transfer function of z, 7 is the sampling interval of
the control system is 1 ms, and w(z) is the z-transform of the displacement error of the cantilever
beam. The derivative control is realized by a low-pass filter by a cutoff frequency of 2/7. The
parameters used for simulation are listed in Table 2.

3.2. Quadratic feedback control

A quadratic Lyapunov function candidate V(X) = 1/2X"SX is chosen for the feedback control
design. Based on the chosen V' (X), we can design the quadratic feedback control [7] as

Ic = —a(NX + B)TSX (21)

which will stabilize Eq. (18). Here o >0, and S is a real positive definite 2 x 2 matrix that satisfies
Lyapunov equation:

ATS+SA+Q =0, (22)

where Q is a real positive semi-definite 2 x 2 matrix.
The proof may be obtained from the rate of change of the quadratic Lyapunov function
candidate for (25). The result is given by
V(X) = —1XTQX — o[X"S(NX + B)]%, (23)

where V(X)>0 and V(X) <0 for all X#0. Otherwise, it can also be shown in Ref. [9] that the set
Y ={X € R*>: V(X) = 0} has a unique solution and contains only trivial trajectories of Eq. (18).

Table 2

The parameters of the system

Strength of magnetization of the permanent magnet Jo =0.85 (T)
Width of rectangular permanent magnet a;=10x 1073 (m)
Outer width of the coil a =175x%x 1073 (m)
Length of a rectangular permanent magnet by=10x 1073 (m)
Outer length of the coil by =17.5x%x 1073 (m)
Height of the coil (z.; —ze2) H=30x10"3 (m)
Height of the core (z;—z3) H,=315x%x1073 (m)
Number of turns of the coil N =572

Mass of the permanent magnet m=4.0x 107 (kg)
Resistance of the coil R=21 Q)

Inductance of the coil L=97x10" (h)
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Hence, the control current /¢ in Eq. (21) globally asymptotically stabilizes the bilinear system

(18).
3.3. Optimal feedback control

To solve the optimal control problem of the bilinear system (18), the quadratic performance
index is defined as follows:

JX,Ic) = % /0 OO[XTQX + rI%]dt, (24)

where Q is a real positive semi-definite 2 x 2 matrix, and r is a real positive value. By
using Hamilton—Jacobi—Bellman (HJB) equation [15], Hamiltonian of the system can be
formed as

HX, Vi, Ic) = LXTQX + rTE] + (V) [AX + (NX + B)I¢], (25)

where V*(X) is a quadratic function of the state. It seems reasonable to guess a solution in the
form: V*(X) = (1/2)XTS(X)X, and the solution of the HIB equation for the infinite-time case is in
the form: V' = S(X)X, where the matrix-valued function S(X) is real positive definite. Applying

the necessary condition for a minimum: 0H /0/¢c =0 and aZH/aﬂ =0 [17], we obtain the
expression for the optimal control current I. as follows:

It = —r '[NX + B]"S(X)X. (26)

It can be seen that the designed optimal feedback control law in Eq. (26) is similar to the quadratic
feedback control law in Eq. (21). The matrix-valued function S(X) can be obtained from the time-
varying algebraic Riccati equation:

ATS(X) + S(X)A — S(X)[NX + B} '[NX + B]'S(X) + Q = 0 (27

Substituting I¢. of Eq. (26) into Hamiltonian (25) via Eq. (27), it yields H(X, V'3, I) = 0, and
shows that the performance index is minimized by /.. The proof of the global asymptotic stability
[15] is the same as Eq. (23).

Unfortunately, this nonlinear system of algebraic matrix equation (18) is hard to solve. In other
words, it has no analytical solution. However, it has been shown in Ref. [16] that the approximate
solutions can be obtained using the iteration method from the convergent sequence of the
following linear system:

(a) if X9(0) = X,, j =0,

X = AXO, (28)

(b) if XP0)=X,,j=1,2,...,

X7 = AX? + (NX0-D 4 B)1?. (29)
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Therefore, the related sequence of the time-varying algebraic Riccati equation and the suitable
optimal control current are listed as follows:

ATSD + SVA — SONXU=D 4 B)r~/(NXV=D 1+ B)'SY + Q =0, (30)
I = - 'INXVU-D 4 BTSOXO), (31)

The trajectories X*” are the solutions of Eq. (29) associated with *CU) in place of I¢. It has been
proved [16] that if X* and /. represent the solutions of the optimization problem (18) and (27),
then the sequence {X*(’)} converges uniformly to the optimal trajectory X* and the sequence {/ *CU)}
converges uniformly to the optimal control /.

4. Numerical and experimental results
4.1. Physical model

4.1.1. System parameters
In the numerical simulations, Runge—Kutta method is employed to solve Eq. (18). The system
parameters are chosen as follows:

(i) Cantilever beam: | = 0.146m, b = 0.01m, 1 = 0.001 m, p = 411kg/m?, E = 20 GPa,
A=10x10"m? and I, = 8.33 x 107" m*;
(i) Tip mass: m =4 x 10~ kg;
(ii1) The other parameters: g, = 3.2 x 102m, and Iy = 0A.

4.1.2. Initial conditions
In the numerical simulations, the initial conditions of the cantilever beam at the tip are v(/,0) =
3.46 x 10> m and v,(/,0) = 0m/s.

4.2. Control parametric matrices
The design technique of the quadratic and optimal feedback controls for the bilinear system can

be summarized in the following steps:
Step 1: Choose the weighting matrices:

Step 2: Choose the weighting factors:

(i) Quadratic feedback control: o = 1 x 107.
(i) Optimal feedback control: r = 0.05.
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Step 3: Solve Lyapunov equation (22) for S in the quadratic feedback control method or solve
the time-varying algebraic Riccati equation (27) for S(X) in the optimal feedback control method.
Step 4: Obtain the control currents from Egs. (21) and (26).

4.3. Experimental setup

Fig. 5 shows the photograph of the experimental cantilever beam with the EMA. The input
voltage waveform of the electromagnetic actuator is generated by the SIMULINK software and
Real-Time Windows Target Tool, which is a Windows-supported graphical programming
language. The DA/AD converter with a resolution of 12 bits is used to transform the output
waveform to the power amplifier, and then to the EMA. A capacitor-type sensor (ADE: Model-
5503) with the frequency bandwidth of 20kHz, the measuring range of £500um and the
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Fig. 5. (a) The amplitude and frequency of free vibration of the cantilever beam. (b) The free vibration curve of the
equivalent system in the experimental operation.
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corresponding resolution of 200 nm are used to observe the motion behavior of the cantilever
beam. The optical-type sensor is needed to measure deflections v(x, ¢) at x = /.

4.4. Numerical and experimental results

From Egs. (2a) and (2b), we obtain the equivalent spring with the mass M, = 4.60 x 10> kg,
and the elastic constant K, = 14.62Nm. By using the fast Fourier transform (FFT), the
magnitudes and phase of the experiments of free vibration of the cantilever beam with a tip
mass under steady-state operation are measured. Fig. 5(a) shows the measured amplitude
((w,) 0.33mm and frequency of damped vibration (wg = w,v/1 — (%) 8.97Hz of displacement
of the cantilever beam. From Eqgs. (2c) to obtain the equivalent damping constant
C,=295x10">Ns/m. We can analyze the natural frequency and cantilever beam with
a tip mass parameters—the equivalent mass, stiffness, and the damping ratio. In the model
analysis, the structure is assumed to be linear and the parameters to be time invariant. Fig. 5(b)
shows the cantilever beam vibration curve of the equivalent model and experiment without
controller, which are the vibration numerical simulation and experimental results of the
cantilever beam.

The electromagnetic forces curve can use a multiple linear regression model to replace the real
model. The form of multiple linear regression models and the electromagnetic forces versus air
gap under different currents are shown in Fig. 6(a). Figs. 6(b)-6(d) show the electromagnetic
forces versus distance, current, and distance multiplying by current regressions, the regression
coefficients being ff; = 6.40 x 107>, f, = 1.60 x 1072, and f; = 5.46 x 107!, and the ANOVA
analysis is listed in Table 1. The F-test statistic used to determine whether our multiple regression
model is adequate is the F statistic from the preceding ANOVA table. We see that F = 2.13 x 10°
is larger than F,— 0131997 = 3.78, so with right-tail area « = 0.01, the testing procedure will be to
reject Hy : f; = B, = f3 = 0 (this is a poor set of predictor variables), and accept the alternative
hypothesis H,: at least one f#0, the three independent variables as a group are good predictors
of home size. Sequentially, we use the #-test procedure to test the effect of the individual
variables in the multiple regression models. For the regression coefficients, ;, f,, and f;, the
hypothesis Hy : f; = f, = f; = 0 with a Force’s three z-ratio values, ¢, = 3.87, , = 18.33, and
t3 = 19.76, having n — k — 1 = 1997 degrees of freedom, there are k = 3 predictors, and with
n = 2001 vectors of observations. As can be seen, all three significance levels are larger than
10.005,1997(1y/2n—k—1) = 2.576, with right-tail area o =0.01.Thus, we would reject the null
hypothesis and accept the alternative hypothesis. Finally, in Table 1, we would get a correlation
coefficient R-square value equal to 99.7%, which tells us that 99.7% of the variability in average
force, from one data value to another, can be explained by distance, current, and distance
multiplying by current very well.

By using the control current of the EMA in the numerical simulations and experimental
operations, the magnetic attraction/repulsive forces are generated to suppress vibrations of the
cantilever beam. The numerical simulations and experimental results via the PID controller are
compared in Fig. 7, where the dotted lines represent the numerical simulations and the solid lines
represent the experimental results. It is seen in Fig. 7(a) that the beam displacement is almost
suppressed to zero within 0.5 s of proper selecting the PID control gains: K, = 6.5, K; = 2.1, and
K;=0.7. The control current of the EMA shown in Fig. 7(b) has the peak value of 0.47 A at
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Fig. 7. The vibration control of the cantilever beam via the PID control with K, = 6.5, K; = 2.1, and K; = 0.7. (a) The
displacement of the cantilever beam. (b) The control current of the EMA. (c) The total mechanical energy.

36 ms, and will decay to zero after 0.5s. From Eq. (2¢), the total energy shown in Fig. 7(c) decays
to zero after 0.3s.

Figs. 8(a)—(c) compare the numerical simulations and experimental results of the cantilever
beam via the quadratic feedback control. It is seen in Fig. 8(a) that the beam displacement is
almost suppressed to zero within 0.4s of being associated with the quadratic feedback control
gain: o = 1 x 107, The control current of the EMA shown in Fig. 8(b) has the peak value of
0.56 A at 26 ms, and will decay to zero after 0.4s. The total energy shown in Fig. 8(c) decays to
zero after 0.2s.

The numerical simulations and experimental results are compared in Figs. 9(a)—(c) via
the optimal feedback control. It is seen in Fig. 9(a) that the beam displacement is
almost suppressed to zero within 0.25s associated with the optimal feedback control gain:
y» = 0.05. The control current of the EMA shown in Fig. 9(b) has the peak value of 0.70 A at
29ms, and will decay to zero after 0.25s. The total energy shown in Fig. 9(c) decays to zero
after 0.15s.

From the numerical and experimental results, we find that the controlled responses
are asymptotically stable for all the three controls. From the experiences in the
numerical simulations and experiment operations, a very small o value of the quadratic
feedback control could not properly control the vibration, but a very large o value will cause
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the cantilever beam to hit the sensor. In summary, numerical and experimental results
with the PID controller, the quadratic feedback controller and the optimal feedback
controller can be effectively suppressed for the vibration control of the proposed bilinear
system.

5. Conclusion

In this paper, an electromagnetic actuator for the vibration control of a cantilever beam with a
tip mass is proposed. The governing equation of motion for the proposed actuator are simplified
as a bilinear system, based on which three control laws including the PID control, quadratic
feedback control and optimal feedback control are successfully applied to the cantilever beam
system with a tip mass via the electromagnetic current. The problem is reduced to the standard
form of the bilinear system. According to the numerical simulations and experimental results, it is
found that the three controllers can be effectively suppressed by the vibration of a cantilever beam
with a tip mass.
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Appendix A

In Egs. (3)+(9), the various magnetic flux densities parameters can be seen in Ref. [4] and can be
simplified as

a2 przeo
Fesx(x, s Z) = / / | B — Bax| d’/] di:
a Zel

]/2 e

b/2  pza
Fatern= [ [ 718y, Byldnd.
bi/2 Jza
/2 prze
Fes:(xa s Z) = / / / (B2z + B4Z) d’/’ df,
a/2 Zel
by/2  pze
N U SRS (A1)
b1/2 Zel

where &,{,n are variables of integration in x, y, and z directions, respectively. If we
consider the coil with a number of turns N, B, represent the magnetic flux densities
at the coordinate z due to bundled conductors AB under a current /, while Bj, represent
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the magnetic flux densities at the coordinate y due to bundled conductors AB under a
current 7.

I
Bip=¢ IR, (cos 011 — cos 012),
I
Bi. = Bip cos ¢, = ¢ IR (cos 011 — cos 012) cos ¢,
1
. 1 )
Bi, = Bip sin ¢ = ¢ IR (cos 011 — cos 01») sin ¢y, (A.2)
1
where
17 y> - C,
_ 2 2112 _
R =[C+y)+C=—n7T1" =« {_1’ y< —L,
( I R b
— a
tan |:“71+(C—1}771)+x:| for x> — [71 + (C — 71)],

il

011 = -1 -R b
11 T — tan [m} for x< — [%+(€_7]):|a

for x = —[4 + (¢ - %),

ST

_ tan-—! R a b
T — tan ["71+(g—”71—x] for x<[4+(—%)],

. b
FHC=P)—x

012 = tan_l |:$:| for x> [a2_|+(é_b71)},

; for x = [+ (=]

\

¢, =sin"' [(z—n)/Ry].

The magnetic flux densities due to the current BC,CD and DA can be obtained in the same way.

z

z
Feoex(x,y,2) = / |Bax — B4x|§=a|/2 dn,

3

%)
Fecy(x,ya Z) = / |B3y - Bly|§:h1/2 d’/la
z3

z
Fee:(x,y,2) = / (Bi: + By: + Bs: + B4Z)é=a1/2,§=b1/2 dn. (A.3)

<3
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In Eq. (5):
_ 2 2 2
GP — \/G + pr + sza
cP \/ch,c + Gzpy + G?p"
u1/2 b1/2
Gn=[ | / (Bay = Baslerg ey didyd,
—(11/2 —b] /2 V)
01/2 b1/2
= Bs, — By,|. dndydx,
_al/Z/—hl/Z ‘ g He=bi/22=
@2 b2
= / /2/b /2/ (Biz + Bo: + Bs: + Baz)eey, j20=by /2=, A Ay dX,
—daj 1
a1/2 b1/2
= / / |B2x - B4x|q“:a1/2,z:zz d'? dy dx’
—al/ b1/2
b /2
= B3, — B, . . di’] dydx,
/—a1/2 /b1/2 /23 B, y‘g*b‘/z’ﬁ“z
a1/2 b1/2
= (Biz + By + Bs. + B4z)¢=a1/2,g:bl/2 .—-, dndydx.
a1/2 7b1/2 z3
In Eq. (6):
0
pr(X,y, Z) = / |B2x - B4x|g“=a]/2 di’],
z
0
Fpy(x,y,2) = / | By — Bly}g ny2d
_0
sz(x7 Y, Z) = / (Blz + B2z + B3z + B4z)§:a1/2,§:b1/2 d’?
2
In Eq. (7):

0
me(X,y, Z) = / |Box — B4x|§:a1/2 dr/,
z
0
me(X,,V,Z) = / ‘B3y B1y| {=h /2
z

0
Fz(x,p,2) = / (Biz + Bo: + Bs: + Baz)eey, pczpy 2 A1
)

(A.4)

(A.5)

(A.6)
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Appendix B

In Eq. (11¢), the polynomial regression functions are used and the coefficients are obtained as

1 01/2 b|/2
O‘Z(Zk) = 2—/ [K%(ngz - Féx - ngy) + 2K1K2(Festecz - FesxFecx - FesyFecy)
Ko J—a /2 J—by)2

+ K3(F?, — F2_ — F% )]dxdy

ecz ecx ecy

= Poo + Barzk + Poazi + Poazi

1 a1/2 171/2
o(zk) = _/ {Kl[Fesz(B - — B,2) — Fesx(Bpx — Bx) — Fesy(pr - Bmy)]
Ho J—a /2 J—by)2

+ K2[Fecz(B z Bmz) - Fecx(Bpx - Bmx) - Fecy(pr - Bmy)]} dx dy
= Bio + Biizk + Biazi + Biszis

1 01/2 b1/2 ) ) )
Fs(zk) = ﬂ/ / [(sz - Bmz) - (Bpx - mx) - (pr - Bmy) ]dx dy
0 —

—ai)2 )by )2
= Boo + Brozk + Boazi + Poszis (B.1)
where
N N N N

- - and Ky = p = pop, >
1 (%—%)H (%—%)H an 2 'uzz lu’()nu)Z2

Appendix C

The forces generated by the electromagnetic actuator for various input currents and air gaps are
depicted in Fig. 6. From the experimental results, the control force of the EMA is reduced to

Fe(zi, I) =~ Bizi + fod + Bazicd. (C.1)

The form of multiple regression method [14] offers the behavior of a particular dependent variable
F.(zx, 1) based on the three predictor variables (z, I,z /). It can use a computerized statistical
package such as EXCECL, MINITAB, SPSS, STATISTICS, or SAS to estimate the coefficients
of the force. To determine adequacy of the regression model, we can test the entire set of predictor
variables using an F test 3 (k) and 1997 (n — k — 1) degrees of freedom. The contribution of an
individual predictor variable (say, z, I, z;I) can be tested using a ¢ statistic with 1997 (n — k — 1)
degrees of freedom. The ANOVA analysis table is listed in Table 1.

The solution for the preceding illustration is shown in Table 1. Using the results, the F value is
larger than F,—o013,1997 = 3.78 (reject Hy : f; = f, = f3 = 0), which owns the highest correlation
(R square = 99.7%). The three independent variables as a group are good predictors of home size.
According to Table 1, the three z-ratio values are larger than 79.005,1997(Z5/2,—k—1) = 2.576. A large
value of #-ratio indicates that Z;, I, and Z; I contribute significantly to the prediction of F.(z, I).
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