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Abstract

The aim of this study is to develop an electromagnetic actuator (EMA) for the vibration control of a
cantilever beam with a tip mass. The proposed EMA system consists of an electromagnet and a permanent
magnet attached at its top, whereas another permanent magnet is installed at the tip of the cantilever beam.
The gravity force is balanced using the repulsive force between the two permanent magnets. The governing
equation of the beam vibration coupled with the proposed EMA can be simplified as a bilinear system
(BLS). In this study, the PID control, quadratic feedback control and optimal feedback control laws are
employed to control the coil currents of electromagnet. The experimental results and numerical solutions
reveal that vibrations of the cantilever beam are effectively suppressed by using the proposed EMA with all
the three control efforts.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The control problem of dynamic responses for a cantilever beam with a tip mass is often
encountered in many practical engineering applications. To explore the basic nature of the
cantilever beam with a tip mass, number of analytical and experimental studies on this issue have
been carried out [1,2]. In the mean time, researches on dynamic characteristics of actuators used in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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the magnetic levitation system have received attention in the structure control problems. The
magnetic levitation techniques not only exploit many advantages of no-mechanical-contact
suspension, guidance and propulsion systems, but also utilize the electric current feedback to
remove vibration of the levitation body. Schafer and Holzach [1] developed an experimental
system for the vibration control of a cantilever beam, in which an optimal regulation for the
magnetically levitated body was carried out. In their experiment, the electromagnet was
considered to be ideal, and the nonlinear dynamics of the actuator was not taken into
consideration. Ju et al. [2] proposed an electromagnetic actuator to the vibration control of a
cantilever beam. In their study, both collocated and non-collocated PID controls were used to
suppress vibrations of the cantilever beam. By using an ideal permanent magnet and an
electromagnet, Nagaya and Arai [3] proposed an actuator in the magnetic levitation system. The
analytical expressions for obtaining the levitation force, spring constant, and the control force
versus the electric current in the electromagnet were derived using the electromagnetic theory. By
using the drag-force-type electromagnetic actuators, Nagaya and Ishikawa [4] proposed a
vibration isolation table, which can be moved in both horizontal and vertical directions by
magnetic forces. Moreover, Nagaya and Sugiura [5] proposed a permanent magnetic levitation
system using a couple of electromagnetic actuators, and found that the feedback for obtaining a
linear spring constant has no dependence on the damping force, which is generated by a velocity
feedback loop.
The bilinear controller system, perhaps, contains the simplest class of nonlinear system. In

general, the control problems for the BLS can be distinguished into three cases [6]: (i) linear
feedback control, (ii) quadratic feedback control and (iii) optimal feedback control. Lyapunov
stability theorem could be employed to find the stabilizing feedback controller [7] for the
continuous BLS such that the closed-loop system is asymptotically stable. Cebuhar and Costanza
[8] studied the optimal control problems for the BLS and solved them with a view to approximate
analogous problems for the general nonlinear system. The approximation procedure is
characterized by a sequence of linear problems converging to the overall optimal solution. Based
on Lyapunov stability theorem and the solution of Lyapunov equation, Benallou et al. [9]
designed a nonlinear controller, which is similar to the quadratic feedback controller. Chen [10]
proposed a novel nonlinear feedback control such that the closed-loop system is not only
asymptotically stable but also exponentially stable.
In this study, a cantilever beam is excited in the vertical direction by applying a dc current to the

electromagnet. The external nonlinear magnetic force, generated by the EMA, is considered to act
on the tip mass. Mathematical expressions of the attraction/repulsive forces are derived using
Biot–Savart Law [11]. In addition, the governing equation of motion for the proposed EMA can
be simplified as the BLS, which is the main control problem in this paper. Three control strategies,
including the PID control, the quadratic feedback control and the optimal feedback control, are
applied to suppress the flexible vibrations of the cantilever beam. The dynamic formulations and
energetic analysis are discussed. Finally, numerical solutions and experimental results are
compared to validate the theoretical analysis.
The paper is organized as follows. Detailed descriptions and theoretical developments on the

proposed model are given in Section 2. Mathematical derivations of the controllers are included in
Section 3. Numerical simulations and experimental results are given in Section 4. Conclusions are
drawn in Section 5.
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2. Modeling assumptions and theoretical analysis

2.1. Assumptions

The physical model of the proposed EMA is illustrated in Fig. 1(a), the cantilever beam with tip
mass by the Euler-beam theory can be seen in Ref. [12], where r is the mass density, A is the cross-
sectional area, l is the total length, E is the Young’s modulus, and In is the moment of inertia of
the uniform cantilever beam, which is modeled by the Euler-beam theory. The tip mass is made of
the permanent magnet with mass m, and an electromagnetic actuator is employed to control its
vibration.

2.2. Kinetic and strain energies

According to the free-body diagram shown in Fig. 1(b), we have the shear force v ¼ �mg

and the moment–shear relationship dM=dx ¼ �v. By using the boundary conditions vð0; tÞ ¼
vxð0; tÞ ¼ 0 and vxxðl; tÞ ¼ 0, it is easy to obtain the deflection

vðx; tÞ ¼ vðl; tÞ
3

2

x

l

� �2
�
1

2

x

l

� �3� �
(1)

where vðl; tÞ ¼ �mgl3=ð3EInÞ is the tip deflection of the cantilever beam subjected to a tip loading
mg, and EIn is the bending rigidity of the beam.
Energy methods [12] can be used to find the approximate equation of motion of the system

in Fig. 1(a), and its equivalent mass-spring system is shown in Fig. 1(c). The elasticity of the
cantilever beam is lumped as an equivalent spring with an elastic constant Ke, while the inertial
properties of the cantilever beam and its tip mass are lumped as an equivalent mass Me.
By using Eq. (1), the kinetic energy of the cantilever beam and its tip mass can be written as

K:E: ¼
1

2

Z l

0

rAv2t ðx; tÞdx þ
1

2
mv2t ðl; tÞ ¼

1

2
Mev

2
t ðl; tÞ, (2a)

where Me ¼ ð33=140ÞrAl þ m, and vtðl; tÞ is the velocity of the tip mass.
The strain energy of the cantilever beam can be written as

S:E: ¼

Z l

0

1

2
EInv2xxðx; tÞdx ¼

1

2
Kev

2ðl; tÞ, (2b)

where Ke ¼ ð3EInÞ=l3.
For an underdamped system, one cycle apart from free vibrations decay can be measured

exponentially in Fig. 1(d), which along with the logarithmic decrement d are given in Ref. [13] as

d ¼ ln
z1

z2

� �
¼

2pzffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ¼
2p
od

Ce

2Me

, (2c)

where

td ¼
2p
od

¼
2p

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p is the period of damped vibration,
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Fig. 1. Schematic diagram of the system. (a) The cantilever beam with a tip mass excited by an electromagnetic

actuator. (b) The free-body diagram of the system at x ¼ l. (c) The equivalent system.
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z ¼
Ce

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KeMe

p is defined as damping ratio,

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
is the frequency of damped vibration,
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on ¼

ffiffiffiffiffiffiffi
Ke

Me

r
is the undamped natural frequency.

From Eqs. (2a) and (2b), we obtain two equivalent parameters: elastic constant Ke and
equivalent mass Me. On substituting them into Eq. (2c), we can obtain the damping constant Ce.
By using the equivalent model with the elastic constant Ke, the damping constant Ce, and the
mass Me, the equation of motion is easily derived and the system becomes 1 dof. The total
mechanical energy is the combination of the kinetic energy (2a) and strain energy (2b).

2.3. Modeling of the electromagnetic actuator

Fig. 2 illustrates the coordinates of the EMA including an electromagnet and a permanent
magnet attached at the cantilever tip. The coordinates and symbols are defined as follows: a1 is the
width of a rectangular permanent magnet, a2 is the outer width of the coil, b1 is the length of a
rectangular permanent magnet, b2 is the outer thickness of the coil; z1 is the coordinate describing
the upper surface of the permanent magnet at the cantilever tip, z2 and z3 are the coordinates
describing the upper and lower ends of the core of the electromagnet, respectively; ze1 and ze2 are
the coordinates describing the upper and lower ends of the coil of the electromagnet, respectively;
and zk is the gap between the two magnets.
Figs. 3(a)–(e) and 4 illustrate the current and magnetic flux of a rectangular coil. Fig. 3(a)

illustrates the geometry of one turn rectangular current. Fig. 3(b) illustrates magnetic flux at the
point P due to the current AB. Figs. 3(c) and (d) illustrate magnetic flux at the point P due to the
current AB mapping on the zx and zy planes, respectively. Fig. 3(e) illustrates magnetic fluxes at
the point P due to the coil current of N turns. It is seen that the magnetic flux densities due to the
coil current [4], at an arbitrary point ðx; y; zÞ due to an input current I flowing through a
rectangular coil can be expressed as

Besxðx; y; zÞ ¼ m0jFesxðx; y; zÞ, (3a)

Besyðx; y; zÞ ¼ m0jFesyðx; y; zÞ, (3b)
Z Z
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Fig. 2. Coordinates of the proposed electromagnetic actuator.
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Fig. 3. Coordinates of the rectangular currents. (a) Geometry of one turn rectangular current. (b) Magnetic flux at

point P due to the current AB. (c) and (d) Magnetic fluxes at the point P due to the current AB in the xz and yz planes,

respectively. (e) Magnetic fluxes at the point P due to the coil currents of N turns.
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Beszðx; y; zÞ ¼ m0jFeszðx; y; zÞ, (3c)

where

j ¼ jx ¼ jy, (3d)
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Fig. 4. Photograph of the experimental cantilever beam with the EMA.
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jx ¼
N

ða2
2
� a1

2
ÞH

I for the coil in the x direction,

jy ¼
N

ðb2
2
� b1

2
ÞH

I for the coil in the y direction,

in which m0 is the magnetic permeability in air, j is the electric current per unit cross-sectional area
in the coil, N is the number of turns of the coil, and H represents the height of the coil ðze12ze2Þ.
The detailed parameters of Eqs. (3)–(9) can be seen in Appendix A. In addition, it is assumed that
the width and thickness of rectangular coil are equal in the x and y directions (i.e.
a2=2� a1=2 ¼ b2=2� b1=2Þ, and one will have j ¼ jx ¼ jy. The detailed derivatives can be seen
in Ref. [4].
The magnetic flux densities due to the core under the input current I are

Becxðx; y; zÞ ¼ JceðIÞFecxðx; y; zÞ, (4a)

Becyðx; y; zÞ ¼ JceðIÞFecyðx; y; zÞ, (4b)

Beczðx; y; zÞ ¼ JceðIÞFeczðx; y; zÞ, (4c)

where

JceðIÞ ¼ m
NI

z2
¼ m0mr

NI

z2
. (4d)
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In Eq. (4d), mr denotes the relative permeability of the electromagnet core. Since the electromagnet
and permanent magnet are connected together at boundary z ¼ z2, the core of the electromagnet
can be magnetized by the permanent magnet. The magnetization strength Jcp in the core due to
the permanent magnet can be found by using

Jcp ¼
Gcp

Gp

ð1� nÞJ0, (5)

where J0 is the strength of magnetization of the permanent magnet, and n is the leak coefficient.
The magnetic flux densities Bpx; Bpy, and Bpz at a point P induced by both the permanent

magnet and the magnetized core are obtained by summing the flux densities due to J0 and Jcp as

Bpxðx; y; zÞ ¼ J0Fpxðx; y; zÞ þ JcpFecxðx; y; zÞ, (6a)

Bpyðx; y; zÞ ¼ J0Fpyðx; y; zÞ þ JcpFecyðx; y; zÞ, (6b)

Bpzðx; y; zÞ ¼ J0Fpzðx; y; zÞ þ JcpFeczðx; y; zÞ. (6c)

With the opposite polarity, the magnetic flux densities Bmx, Bmy, and Bmz at the point P induced
by the permanent magnet of the cantilever tip are

Bmxðx; y; zÞ ¼ J0Fmxðx; y; zÞ, (7a)

Bmyðx; y; zÞ ¼ J0Fmyðx; y; zÞ, (7b)

Bmzðx; y; zÞ ¼ J0Fmzðx; y; zÞ. (7c)

Hence, the magnetic flux densities Bfx; Bfy, and Bfz due to the entire coil, permanent magnet,
and the core of electromagnet are

Bfxðx; y; z; IÞ ¼ Besxðx; y; z; IÞ þ Becxðx; y; z; IÞ þ Bpxðx; y; z; IÞ, (8a)

Bfyðx; y; z; IÞ ¼ Besyðx; y; z; IÞ þ Becyðx; y; z; IÞ þ Bpyðx; y; z; IÞ, (8b)

Bfzðx; y; z; IÞ ¼ Beszðx; y; z; IÞ þ Beczðx; y; z; IÞ þ Bpzðx; y; z; IÞ. (8c)

Since opposite polarities face each other, the total magnetic flux densities Bx; By, and Bz are

Bxðx; y; z; IÞ ¼ Bfxðx; y; z; IÞ � Bmxðx; y; zÞ, (9a)

Byðx; y; z; IÞ ¼ Bfyðx; y; z; IÞ � Bmyðx; y; zÞ, (9b)

Bzðx; y; z; IÞ ¼ Bfzðx; y; z; IÞ � Bmzðx; y; zÞ. (9c)

2.4. Magnetic force

The total force vector F in the magnetic field is obtained by using Maxwell’s stress tensors,
which can be seen in Refs. [3–5]:

F ¼

ZZ
a

T � n̂da, (10a)
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where T is the stress tensor in the magnetic field and n̂ ¼ n̂xnx þ n̂yny þ n̂znz is the normal vector
of a small area da. T is shown by using the orthogonal coordinates ðx; y; zÞ as follows:

T ¼

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

2
64

3
75 ¼

1

m0

B2
x � B2

y � B2
z

2
BxBy BxBz

ByBx

�B2
x þ B2

y � B2
z

2
ByBz

BzBx BzBy

�B2
x � B2

y þ B2
z

2

2
666666664

3
777777775
. (10b)

The interactive force Fzðzk;IÞ of the EMA is then expressed as

Fzðzk; IÞ ¼

ZZ
a

ðTzxn̂x þ Tzyn̂y þ Tzzn̂zÞda. (11a)

Since the magnetic field is symmetrical about the z-axis, the components of the normal vector
become nx ¼ ny ¼ 0. Substituting these into Eq. (11a), yields

Fzðzk; IÞ ¼
1

2m0

Z a1=2

�a1=2

Z b1=2

�b1=2
½B2

zðx; y; zk; IÞ � B2
xðx; y; zk; IÞ � B2

yðx; y; zk; IÞ	dxdy. (11b)

Substituting Eq. (9) into Eq. (11b), the actuating force has the form

Fzðzk; IÞ ¼ a2ðzkÞI
2 þ a1ðzkÞI þ FsðzkÞ, (11c)

where a2ðzkÞ; a1ðzkÞ and FsðzkÞ represent the coefficients, which are functions of the air gap zk.
The details can be seen in Appendix B.
2.5. Control force

In Fig. 1(a), z
k ¼ g0 is the equilibrium position of air gap between the two permanent magnets,
one is attached to the electromagnet and the other is attached at the tip of the cantilever beam. In
this static equilibrium, we have the input current I ¼ 0. According to Eq. (11c), the corresponding
actuating force is given by

Fzðz


k; 0Þ ¼ Fsðz



kÞ. (12a)

Define the control force under the non-zero input current I as

Fcðzk; IÞ ¼ Fzðzk; IÞ � Fsðz


kÞ

¼ a2ðzkÞI
2 þ a1ðzkÞI þ ½FsðzkÞ � Fsðz



kÞ	. ð12bÞ

The forces generated by the electromagnetic actuator are dependent on the input currents and
air gaps between the two permanent magnets. From the calibration results of the magnetic force,
it is found that the term a2ðzkÞI

2 is much smaller than the other terms in Eq. (12b), especially when
the current is so small that it can be neglected. The electromagnetic forces, described by using a
multiple linear regression model [14] with the ANOVA (Analysis of Variance Table) analysis
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Table 1

The ANOVA analysis table of the multiple regression method

The regression equation is: Fcðzk; IÞ ¼ 6:40� 10�3zk þ 1:60� 10�2I þ 5:46� 10�1zkI

Multiple R 99.8% Analysis of variance

R square 99.7% DF Sum of squares Mean square F PROB4F

Adjusted R square 99.6% Regression k ¼ 3 1.51E+0 5.05E�1

Standard error 1.54E�3 Residual n � k � 1 ¼ 1997 4.74E�3

Observation number 2001 Total n � 1 ¼ 2000 1.52E+0

Variables in the equation

Predictor Coefficient Stdev t-ratio P-values

b1ðZkÞ 6.40E�3 1.65E�3 3.87E+0 1.12E�4

b2ðIÞ 1.60E�2 8.74E�4 1.83E+1 0.00E+0

b3ðZkIÞ 5.46E�1 2.73E�2 1.98E+1 0.00E+0

R.-F. Fung et al. / Journal of Sound and Vibration 288 (2005) 957–980966
listed in Table 1 are reduced as

Fcðzk; IÞ � a1ðzkÞI þ ½FsðzkÞ � Fsðz


kÞ	

� b1zk þ b2I þ b3zkI , ð12cÞ

where zk ¼ g0 þ vðl; tÞ.

Fcðzk; IÞ � b1ðg0 þ vÞ þ b2I þ b3ðg0 þ vÞI

� b1g0 þ b1v þ ðb2 þ b3g0ÞI þ b3vI . ð12dÞ

In the ANOVA analysis, the squared correlation between the real values and fitted values is
called the square of multiple correlation coefficients, usually labeled ‘‘R-square’’. The idea is that
R-square value gives some sense about the agreement between the observed values, and the
predicted values resulting from the regression equation. The value of R-square is between 0 and 1,
and as we increase the number of predictors, R-square gets larger. This form of multiple linear
regression models can be found in Appendix C.
2.6. Equation of motion

The equation of motion of the equivalent model in Fig. 1(c), which is excited by the control
force, can be easily obtained by using Eqs. (2a)–(2c) as

Fzðzk; IÞ � Meg � Ce _vðl; tÞ � Kevðl; tÞ ¼ Me €vðl; tÞ, (13a)

Me €vðl; tÞ þ Ce _vðl; tÞ þ Kevðl; tÞ ¼ Fcðzk; IÞ, (13b)

where Fzðzk; IÞ ¼ Fcðzk; IÞ þ Fsðz


kÞ and Fsðz



kÞ ¼ Meg.



ARTICLE IN PRESS

R.-F. Fung et al. / Journal of Sound and Vibration 288 (2005) 957–980 967
In the following, we consider the case of small vibrations with the coefficient zk ¼ g0 þ vðl; tÞ.
Hence, Eq. (13) can be simplified as

Me €v þ Ce _v þ ðKe � b1Þv ¼ b1g0 þ b4I þ b3Iv, (14)

where b4 ¼ b2 þ b3g0.
If the control current I of the coil system is given as I ¼ I0 þ IC, where I0 and IC are the steady

current and the control current, respectively. Then the equation of motion for the cantilever beam
with a tip mass can be expressed as

Me €v þ Ce _v þ ðKe � b5Þv ¼ b6 þ b4IC þ b3ICv, (15)

where

b5 ¼ b1 þ b3I0 and b6 ¼ b1g0 þ b4I0.

Considering the case of the steady-state situation, i.e., €v ¼ _v ¼ 0 and v ¼ constant, then Eq. (14)
without the control current can be rewritten as

ðKe � b5Þvs ¼ b6. (16)

Thus, we have the steady-state displacement vs ¼ b6=ðKe � b5Þ.
In order to simply the dynamic analysis, let w ¼ v � vs, and one will have €w ¼ €v and _w ¼ _v.

Therefore, Eq. (15) can be rewritten as

Me €w þ Ce _w þ ðKe � b5Þw ¼ b7IC þ b3ICw, (17)

where b7 ¼ b4 þ b3vs. It should be noted that the variable w is coupled with the control input IC in
Eq. (17), which is a standard form of a bilinear equation [6].
The dynamic equation (17) can be further expressed in the state-space form

_X ¼ AXþNXU þ BU ¼ AXþ ðNXþ BÞU ; Xð0Þ ¼ X0, (18)

where X ¼ fw _wgT 2 R2, U ¼ V ¼ ICR can be regarded as an equivalent circuit, and the matrices
A;N, and the vector B are

A ¼

0 1
b5 � Ke

Me

�
Ce

Me

2
4

3
5 2 R2�2; N ¼

0 0
b3

RMe

0

2
4

3
5 2 R2�2, (19a2b)

B ¼

0
b7

RMe

2
4

3
5 2 R2�1. (19c)

The controller design will be formulated from Eq. (18) such that X ! 0 and U ! 0 as t ! 1.
3. Controller design

In this section, the PID control, the quadratic feedback control and the optimal feedback
control will be designed for the bilinear equation (18). Both the numerical simulations and
experimental verifications of a cantilever beam with the proposed EMA will be performed with all
the three controllers.
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3.1. The PID control

The structure of a typical PID (Proportional-plus-Integral-plus-Derivative) controller is very
simple in the control loops, which can be easily understood and implemented in practice. Such a
simple PID control scheme is given by

ICðzÞ ¼ Kp þ Ki

T

2

z þ 1

z � 1

� �
þ Kd

z � 1

Tz

� �� �
wðzÞ, (20)

where ICðzÞ represents the control current as a transfer function of z, T is the sampling interval of
the control system is 1ms, and wðzÞ is the z-transform of the displacement error of the cantilever
beam. The derivative control is realized by a low-pass filter by a cutoff frequency of 2=T . The
parameters used for simulation are listed in Table 2.

3.2. Quadratic feedback control

A quadratic Lyapunov function candidate V ðXÞ ¼ 1=2XTSX is chosen for the feedback control
design. Based on the chosen VðXÞ, we can design the quadratic feedback control [7] as

IC ¼ �aðNXþ BÞTSX (21)

which will stabilize Eq. (18). Here a40, and S is a real positive definite 2� 2 matrix that satisfies
Lyapunov equation:

ATSþ SAþQ ¼ 0, (22)

where Q is a real positive semi-definite 2� 2 matrix.
The proof may be obtained from the rate of change of the quadratic Lyapunov function

candidate for (25). The result is given by

_V ðXÞ ¼ �1
2
XTQX� a½XTSðNXþ BÞ	2, (23)

where VðXÞ40 and _V ðXÞo0 for all Xa0. Otherwise, it can also be shown in Ref. [9] that the set
S ¼ fX 2 R2 : _V ðXÞ ¼ 0g has a unique solution and contains only trivial trajectories of Eq. (18).
Table 2

The parameters of the system

Strength of magnetization of the permanent magnet J0 ¼ 0:85 (T)

Width of rectangular permanent magnet a1 ¼ 10� 10�3 (m)

Outer width of the coil a2 ¼ 17:5� 10�3 (m)

Length of a rectangular permanent magnet b1 ¼ 10� 10�3 (m)

Outer length of the coil b2 ¼ 17:5� 10�3 (m)

Height of the coil ðze12ze2Þ H ¼ 30� 10�3 (m)

Height of the core ðz22z3Þ Hc ¼ 31:5� 10�3 (m)

Number of turns of the coil N ¼ 572

Mass of the permanent magnet m ¼ 4:0� 10�3 (kg)

Resistance of the coil R ¼ 2:1 ðOÞ
Inductance of the coil L ¼ 9:7� 10�3 (h)
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Hence, the control current IC in Eq. (21) globally asymptotically stabilizes the bilinear system
(18).

3.3. Optimal feedback control

To solve the optimal control problem of the bilinear system (18), the quadratic performance
index is defined as follows:

JðX; ICÞ ¼
1

2

Z 1

0

½XTQXþ rI2C 	dt, (24)

where Q is a real positive semi-definite 2� 2 matrix, and r is a real positive value. By
using Hamilton–Jacobi–Bellman (HJB) equation [15], Hamiltonian of the system can be
formed as

HðX;V

x; ICÞ ¼

1
2
½XTQXþ rI2C 	 þ ðV


xÞ
T
½AXþ ðNXþ BÞIC 	, (25)

where V
ðXÞ is a quadratic function of the state. It seems reasonable to guess a solution in the
form: V
ðXÞ ¼ ð1=2ÞXTSðXÞX, and the solution of the HJB equation for the infinite-time case is in
the form: V


x ¼ SðXÞX, where the matrix-valued function SðXÞ is real positive definite. Applying

the necessary condition for a minimum: qH=qIC ¼ 0 and q2H=qI2CX0 [17], we obtain the

expression for the optimal control current I
C as follows:

I
C ¼ �r�1½NXþ B	TSðXÞX. (26)

It can be seen that the designed optimal feedback control law in Eq. (26) is similar to the quadratic
feedback control law in Eq. (21). The matrix-valued function SðXÞ can be obtained from the time-
varying algebraic Riccati equation:

ATSðXÞ þ SðXÞA� SðXÞ½NXþ B	r�1½NXþ B	TSðXÞ þQ ¼ 0 (27)

Substituting I
C of Eq. (26) into Hamiltonian (25) via Eq. (27), it yields HðX;V

x; I



CÞ ¼ 0, and

shows that the performance index is minimized by I
C . The proof of the global asymptotic stability
[15] is the same as Eq. (23).
Unfortunately, this nonlinear system of algebraic matrix equation (18) is hard to solve. In other

words, it has no analytical solution. However, it has been shown in Ref. [16] that the approximate
solutions can be obtained using the iteration method from the convergent sequence of the
following linear system:
(a)
 if Xð0Þð0Þ ¼ X0, j ¼ 0,

_X
ð0Þ

¼ AXð0Þ; (28)
(b)
 if XðjÞð0Þ ¼ X0, j ¼ 1; 2; . . .,

_X
ðjÞ

¼ AXðjÞ
þ ðNXðj�1Þ þ BÞI

ðjÞ
C : (29)
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herefore, the related sequence of the time-varying algebraic Riccati equation and the suitable
T
optimal control current are listed as follows:
ATSðjÞ þ SðjÞA� SðjÞðNXðj�1Þ þ BÞr�1ðNXðj�1Þ þ BÞTSðjÞ þQ ¼ 0, (30)

I

ðjÞ

C ¼ �r�1½NXðj�1Þ þ B	TSðjÞXðjÞ. (31)

The trajectories X
ðjÞ are the solutions of Eq. (29) associated with I

ðjÞ

C in place of IC. It has been
proved [16] that if X
 and I
C represent the solutions of the optimization problem (18) and (27),

then the sequence fX
ðjÞ g converges uniformly to the optimal trajectory X
 and the sequence fI

ðjÞ

C g

converges uniformly to the optimal control I
C .
4. Numerical and experimental results

4.1. Physical model

4.1.1. System parameters
In the numerical simulations, Runge–Kutta method is employed to solve Eq. (18). The system

parameters are chosen as follows:
(i)
 Cantilever beam: l ¼ 0:146m, b ¼ 0:01m, h ¼ 0:001m, r ¼ 411kg=m3, E ¼ 20GPa,
A ¼ 1:0� 10�5 m2, and In ¼ 8:33� 10�13 m4;
(ii)
 Tip mass: m ¼ 4� 10�3 kg;

(iii)
 The other parameters: g0 ¼ 3:2� 10�2 m, and I0 ¼ 0A.
4.1.2. Initial conditions
In the numerical simulations, the initial conditions of the cantilever beam at the tip are vðl; 0Þ ¼

3:46� 10�3 m and vtðl; 0Þ ¼ 0m=s.

4.2. Control parametric matrices

The design technique of the quadratic and optimal feedback controls for the bilinear system can
be summarized in the following steps:

Step 1: Choose the weighting matrices:

Q ¼
5 0

0 5

� �
2 R2�2.

Step 2: Choose the weighting factors:
(i)
 Quadratic feedback control: a ¼ 1� 10�3.

(ii)
 Optimal feedback control: r ¼ 0:05.



ARTICLE IN PRESS

R.-F. Fung et al. / Journal of Sound and Vibration 288 (2005) 957–980 971
Step 3: Solve Lyapunov equation (22) for S in the quadratic feedback control method or solve
the time-varying algebraic Riccati equation (27) for SðXÞ in the optimal feedback control method.
Step 4: Obtain the control currents from Eqs. (21) and (26).

4.3. Experimental setup

Fig. 5 shows the photograph of the experimental cantilever beam with the EMA. The input
voltage waveform of the electromagnetic actuator is generated by the SIMULINK software and
Real-Time Windows Target Tool, which is a Windows-supported graphical programming
language. The DA/AD converter with a resolution of 12 bits is used to transform the output
waveform to the power amplifier, and then to the EMA. A capacitor-type sensor (ADE: Model-
5503) with the frequency bandwidth of 20 kHz, the measuring range of �500mm and the
Fig. 5. (a) The amplitude and frequency of free vibration of the cantilever beam. (b) The free vibration curve of the

equivalent system in the experimental operation.
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corresponding resolution of 200 nm are used to observe the motion behavior of the cantilever
beam. The optical-type sensor is needed to measure deflections vðx; tÞ at x ¼ l.

4.4. Numerical and experimental results

From Eqs. (2a) and (2b), we obtain the equivalent spring with the mass Me ¼ 4:60� 10�3 kg,
and the elastic constant Ke ¼ 14:62Nm. By using the fast Fourier transform (FFT), the
magnitudes and phase of the experiments of free vibration of the cantilever beam with a tip
mass under steady-state operation are measured. Fig. 5(a) shows the measured amplitude
ðzonÞ 0.33mm and frequency of damped vibration ðod ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Þ 8.97Hz of displacement

of the cantilever beam. From Eqs. (2c) to obtain the equivalent damping constant
Ce ¼ 2:95� 10�3 N s=m. We can analyze the natural frequency and cantilever beam with
a tip mass parameters—the equivalent mass, stiffness, and the damping ratio. In the model
analysis, the structure is assumed to be linear and the parameters to be time invariant. Fig. 5(b)
shows the cantilever beam vibration curve of the equivalent model and experiment without
controller, which are the vibration numerical simulation and experimental results of the
cantilever beam.
The electromagnetic forces curve can use a multiple linear regression model to replace the real

model. The form of multiple linear regression models and the electromagnetic forces versus air
gap under different currents are shown in Fig. 6(a). Figs. 6(b)–6(d) show the electromagnetic
forces versus distance, current, and distance multiplying by current regressions, the regression
coefficients being b1 ¼ 6:40� 10�3, b2 ¼ 1:60� 10�2, and b3 ¼ 5:46� 10�1, and the ANOVA
analysis is listed in Table 1. The F-test statistic used to determine whether our multiple regression
model is adequate is the F statistic from the preceding ANOVA table. We see that F ¼ 2:13� 105

is larger than Fa¼0:01;3;1997 ¼ 3:78, so with right-tail area a ¼ 0:01, the testing procedure will be to
reject H0 : b1 ¼ b2 ¼ b3 ¼ 0 (this is a poor set of predictor variables), and accept the alternative
hypothesis Ha: at least one ba0, the three independent variables as a group are good predictors
of home size. Sequentially, we use the t-test procedure to test the effect of the individual
variables in the multiple regression models. For the regression coefficients, b1; b2, and b3, the
hypothesis H0 : b1 ¼ b2 ¼ b3 ¼ 0 with a Force’s three t-ratio values, t1 ¼ 3:87, t2 ¼ 18:33, and
t3 ¼ 19:76, having n � k � 1 ¼ 1997 degrees of freedom, there are k ¼ 3 predictors, and with
n ¼ 2001 vectors of observations. As can be seen, all three significance levels are larger than
t0:005;1997ðta=2;n�k�1Þ ¼ 2:576, with right-tail area a ¼ 0:01. Thus, we would reject the null
hypothesis and accept the alternative hypothesis. Finally, in Table 1, we would get a correlation
coefficient R-square value equal to 99.7%, which tells us that 99.7% of the variability in average
force, from one data value to another, can be explained by distance, current, and distance
multiplying by current very well.
By using the control current of the EMA in the numerical simulations and experimental

operations, the magnetic attraction/repulsive forces are generated to suppress vibrations of the
cantilever beam. The numerical simulations and experimental results via the PID controller are
compared in Fig. 7, where the dotted lines represent the numerical simulations and the solid lines
represent the experimental results. It is seen in Fig. 7(a) that the beam displacement is almost
suppressed to zero within 0.5 s of proper selecting the PID control gains: Kp ¼ 6:5, Ki ¼ 2:1, and
Kd ¼ 0:7. The control current of the EMA shown in Fig. 7(b) has the peak value of 0.47A at
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Fig. 6. (a) The multiple regressions for electromagnetic forces versus air gap under different currents. (b) The coefficient

b1 ¼ 6:40� 10�3 for electromagnetic forces versus distance regressions. (c) The coefficient b2 ¼ 1:60� 10�2 for

electromagnetic forces versus current regressions. (d) The coefficient b3 ¼ 5:46� 10�1 for electromagnetic forces versus

distance multiplying with current regressions.
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Fig. 7. The vibration control of the cantilever beam via the PID control with Kp ¼ 6:5; Ki ¼ 2:1, and Kd ¼ 0:7. (a) The
displacement of the cantilever beam. (b) The control current of the EMA. (c) The total mechanical energy.
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36ms, and will decay to zero after 0.5 s. From Eq. (2c), the total energy shown in Fig. 7(c) decays
to zero after 0.3 s.
Figs. 8(a)–(c) compare the numerical simulations and experimental results of the cantilever

beam via the quadratic feedback control. It is seen in Fig. 8(a) that the beam displacement is
almost suppressed to zero within 0.4 s of being associated with the quadratic feedback control
gain: a ¼ 1� 10�3. The control current of the EMA shown in Fig. 8(b) has the peak value of
0.56A at 26ms, and will decay to zero after 0.4 s. The total energy shown in Fig. 8(c) decays to
zero after 0.2 s.
The numerical simulations and experimental results are compared in Figs. 9(a)–(c) via

the optimal feedback control. It is seen in Fig. 9(a) that the beam displacement is
almost suppressed to zero within 0.25 s associated with the optimal feedback control gain:
g ¼ 0:05. The control current of the EMA shown in Fig. 9(b) has the peak value of 0.70A at
29ms, and will decay to zero after 0.25 s. The total energy shown in Fig. 9(c) decays to zero
after 0.15 s.
From the numerical and experimental results, we find that the controlled responses

are asymptotically stable for all the three controls. From the experiences in the
numerical simulations and experiment operations, a very small a value of the quadratic
feedback control could not properly control the vibration, but a very large a value will cause
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Fig. 8. The vibration control of the cantilever beam via the quadratic feedback control. (a) The disturbance

displacement of the cantilever beam. (b) The control current of the EMA. (c) The total mechanical energy.

Fig. 9. The vibration control of the cantilever beam via the optimal feedback control. (a) The displacement of the

cantilever beam. (b) The control current of the EMA. (c) The total mechanical energy.

R.-F. Fung et al. / Journal of Sound and Vibration 288 (2005) 957–980 975
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the cantilever beam to hit the sensor. In summary, numerical and experimental results
with the PID controller, the quadratic feedback controller and the optimal feedback
controller can be effectively suppressed for the vibration control of the proposed bilinear
system.
5. Conclusion

In this paper, an electromagnetic actuator for the vibration control of a cantilever beam with a
tip mass is proposed. The governing equation of motion for the proposed actuator are simplified
as a bilinear system, based on which three control laws including the PID control, quadratic
feedback control and optimal feedback control are successfully applied to the cantilever beam
system with a tip mass via the electromagnetic current. The problem is reduced to the standard
form of the bilinear system. According to the numerical simulations and experimental results, it is
found that the three controllers can be effectively suppressed by the vibration of a cantilever beam
with a tip mass.
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Appendix A

In Eqs. (3)–(9), the various magnetic flux densities parameters can be seen in Ref. [4] and can be
simplified as

Fesxðx; y; zÞ ¼

Z a2=2

a1=2

Z ze2

ze1

jB2x � B4xjdZdx,

Fesyðx; y; zÞ ¼

Z b2=2

b1=2

Z ze2

ze1

jB3y � B1yjdZdz,

Feszðx; y; zÞ ¼

Z a2=2

a1=2

Z ze2

ze1

ðB2z þ B4zÞdZdx,

þ

Z b2=2

b1=2

Z ze2

ze1

ðB1z þ B3zÞdZdz, ðA:1Þ

where x; z; Z are variables of integration in x, y, and z directions, respectively. If we
consider the coil with a number of turns N, B1z represent the magnetic flux densities
at the coordinate z due to bundled conductors AB under a current I , while B1y represent
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the magnetic flux densities at the coordinate y due to bundled conductors AB under a
current I .

B1P ¼ �1
I

4pR1
ðcos y11 � cos y12Þ,

B1z ¼ B1P cos f1 ¼ �1
I

4pR1
ðcos y11 � cos y12Þ cos f1,

B1y ¼ B1P sin f1 ¼ �1
I

4pR1
ðcos y11 � cos y12Þ sin f1, ðA:2Þ

where

R1 ¼ ½ðzþ yÞ2 þ ðz � ZÞ2	1=2; �1 ¼
1; yX� z;

�1; yo� z;

(

y11 ¼

tan�1 R1
a1
2þðz�b1

2 Þþx

� �
for x4� a1

2
þ ðz� b1

2
Þ

� �
;

p� tan�1 �R1
a1
2þðz�b1

2 Þþx

� �
for xo� a1

2
þ ðz� b1

2
Þ

� �
;

p
2

for x ¼ � a1
2
þ ðz� b1

2
Þ

� �
;

8>>>>>>><
>>>>>>>:

y12 ¼

p� tan�1 R1
a1
2þðz�b1

2 Þ�x

� �
for xo a1

2
þ ðz� b1

2
Þ

� �
;

tan�1 �R1
a1
2þðz�b1

2 Þ�x

� �
for x4 a1

2
þ ðz� b1

2
Þ

� �
;

p
2

for x ¼ a1
2
þ ðz� b1

2
Þ

� �
;

8>>>>>>><
>>>>>>>:

f1 ¼ sin�1 ðz � ZÞ=R1

� �
.

The magnetic flux densities due to the current BC,CD and DA can be obtained in the same way.

Fecxðx; y; zÞ ¼

Z z2

z3

jB2x � B4xjx¼a1=2 dZ,

Fecyðx; y; zÞ ¼

Z z2

z3

jB3y � B1yjz¼b1=2 dZ,

Feczðx; y; zÞ ¼

Z z2

z3

ðB1z þ B2z þ B3z þ B4zÞx¼a1=2;z¼b1=2 dZ. ðA:3Þ
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In Eq. (5):

GP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

px þ G2
py þ G2

pz

q
,

GcP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

cpx þ G2
cpy þ G2

cpz

q
,

Gpx ¼

Z a1=2

�a1=2

Z b1=2

�b1=2

Z 0

z2

B2x � B4xj jx¼a1=2;z¼z2 dZdydx,

Gpy ¼

Z a1=2

�a1=2

Z b1=2

�b1=2

Z 0

z2

B3y � B1y

�� ��
z¼b1=2;z¼z2

dZdydx,

Gpz ¼

Z a1=2

�a1=2

Z b1=2

�b1=2

Z 0

z2

ðB1z þ B2z þ B3z þ B4zÞx¼a1=2;z¼b1=2;z¼z2
dZdydx,

Gcpx ¼

Z a1=2

�a1=2

Z b1=2

�b1=2

Z z2

z3

B2x � B4xj jx¼a1=2;z¼z2 dZdydx,

Gcpy ¼

Z a1=2

�a1=2

Z b1=2

�b1=2

Z z2

z3

B3y � B1y

�� ��
z¼b1=2;z¼z2

dZdydx,

Gcpz ¼

Z a1=2

�a1=2

Z b1=2

�b1=2

Z z2

z3

ðB1z þ B2z þ B3z þ B4zÞx¼a1=2;z¼b1=2;z¼z2
dZdydx. ðA:4Þ

In Eq. (6):

Fpxðx; y; zÞ ¼

Z 0

z2

B2x � B4xj jx¼a1=2 dZ,

Fpyðx; y; zÞ ¼

Z 0

z2

B3y � B1y

�� ��
z¼b1=2

dZ,

Fpzðx; y; zÞ ¼

Z 0

z2

ðB1z þ B2z þ B3z þ B4zÞx¼a1=2;z¼b1=2 dZ. ðA:5Þ

In Eq. (7):

Fmxðx; y; zÞ ¼

Z 0

z2

B2x � B4xj jx¼a1=2 dZ,

Fmyðx; y; zÞ ¼

Z 0

z2

B3y � B1y

�� ��
z¼b1=2

dZ,

Fmzðx; y; zÞ ¼

Z 0

z2

ðB1z þ B2z þ B3z þ B4zÞx¼a1=2;z¼b1=2 dZ. ðA:6Þ
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Appendix B

In Eq. (11c), the polynomial regression functions are used and the coefficients are obtained as

a2ðzkÞ ¼
1

2m0

Z a1=2

�a1=2

Z b1=2

�b1=2
½K2

1ðF
2
esz � F2

esx � F2
esyÞ þ 2K1K2ðFeszFecz � FesxFecx � FesyFecyÞ

þ K2
2ðF

2
ecz � F2

ecx � F2
ecyÞ	dxdy

¼ b20 þ b21zk þ b22z
2
k þ b23z

3
k,

aðzkÞ ¼
1

m0

Z a1=2

�a1=2

Z b1=2

�b1=2
fK1½FeszðBpz � BmzÞ � FesxðBpx � BmxÞ � FesyðBpy � BmyÞ	

þ K2½FeczðBpz � BmzÞ � FecxðBpx � BmxÞ � FecyðBpy � BmyÞ	gdxdy

¼ b10 þ b11zk þ b12z
2
k þ b13z

3
k,

FsðzkÞ ¼
1

2m0

Z a1=2

�a1=2

Z b1=2

�b1=2
½ðBpz � BmzÞ

2
� ðBpx � BmxÞ

2
� ðBpy � BmyÞ

2
	dxdy

¼ b00 þ b10zk þ b02z
2
k þ b03z

3
k, ðB:1Þ

where

K1 ¼
N

ða2
2
� a1

2
ÞH

¼
N

ðb2
2
� b1

2
ÞH

and K2 ¼ m
N

z2
¼ m0mr

N

z2
.

Appendix C

The forces generated by the electromagnetic actuator for various input currents and air gaps are
depicted in Fig. 6. From the experimental results, the control force of the EMA is reduced to

Fcðzk; IÞ � b1zk þ b2I þ b3zkI . (C.1)

The form of multiple regression method [14] offers the behavior of a particular dependent variable
Fcðzk; IÞ based on the three predictor variables ðzk; I ; zkIÞ. It can use a computerized statistical
package such as EXCECL, MINITAB, SPSS, STATISTICS, or SAS to estimate the coefficients
of the force. To determine adequacy of the regression model, we can test the entire set of predictor
variables using an F test 3 ðkÞ and 1997 ðn � k � 1Þ degrees of freedom. The contribution of an
individual predictor variable (say, zk; I ; zkI) can be tested using a t statistic with 1997 ðn � k � 1Þ
degrees of freedom. The ANOVA analysis table is listed in Table 1.
The solution for the preceding illustration is shown in Table 1. Using the results, the F value is

larger than Fa¼0:01;3;1997 ¼ 3:78 (reject H0 : b1 ¼ b2 ¼ b3 ¼ 0), which owns the highest correlation
(R square ¼ 99:7%). The three independent variables as a group are good predictors of home size.
According to Table 1, the three t-ratio values are larger than t0:005;1997ðta=2;n�k�1Þ ¼ 2:576. A large
value of t-ratio indicates that Zk; I , and ZkI contribute significantly to the prediction of Fcðzk; IÞ.
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